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CONTROL OF NONLINEAR MULTIVARIABLE SYSTEXS 

D. P. Lindorff 
Department of Electrical Engineering 

University of Connecticut 
Storrs, Connecticut 06268 

I. INTRODUCTION 

A synthesis technique is developed which has application to nonlinear, 
nonautonomous multivariable systems. The control concept, which is rooted in 
Liapunov's Direct Method, has been described in a number of recent papersi,2p3 
In this paper the method is extended so as to be applicable to nonlinear 
plants with inequality constraints on the controlled forces. Referring to 
Fig. 1, the basic control configuration is shown in which a multivariable 
plant is caused to track a model through the action of a fixed-law controller. 
The design of the controlle r is to be such as to cause the error (e> to be 
bounded. A design example concerned with the control of an exothermic chemi- 
cal reactor is used to illustrate an application of the technique. 

disturbance 

& -pFa:b 

3 linear - 3- 
model 

Fig. 1. Basic Control Configuration 

Grayson' and Monopoli 2 have developed a single-input single-output model- 
tracking system in which a time-variable plant is caused to track a linear, 
stationary model. Lindorff and Monopoli3 have applied the model-tracking 
scheme to a limited class of multivariable plants. In the present paper, the 
multivariable problem is developed further, so as to be applicable to a more 
general class of nonlinear systemswith inequality constraints on the control 
forces. With given limits on the amplitudes of the controlled forces, a 
region of the plant state space can be found in which the control law is 
valid, the size of this region being a function of certain of the model 
states. A novel feature of the method relates to nonlinear constraints which 
may be placed on the model to guarantee validity of the control law within a 
specified region of the state space. 

1 



II. DESCRIPTION OF THE MULTIVARIABLE PLANT 

A multivariable process contains. a multiplicity of inputs and outputs. 
If the outputs are to be usefully controlled, it is necessary that each output 
can be influenced by the controlled inputs. If the control forces are limited 
in amplitude, the region of the state space in which this control can be 
accomplished will also be limited. It will be assumed throughout that each 
output can be identified with a forcing function so that within some region 
of the state space each output can be independently controlled. It is appro- 
priate therefore to require that the number of controlled inputs be equal to 
the number of outputs. 

The plant is assumed to be described by $ set of n first-order ordinary 
differential equations having the vector form 

. 
x = g(x, 3 - t> + @(x,t> g(t), (2.1) 

and a set of q equations defining the plant outputs, these having the vector 
form 

v=cx. (2.2) 

In the above equations, it is assumed that 

x is an n dimensional state vector, 
1 is a q dimensional output vector (q 2 n), 
5 is a q dimensional disturbance vector, 
g is an n dimensional vector function, 
2 is a q dimensional controlled-force vector, 
(0 is an n x q matrix containing no time-derivative operators, 
C is a constant q x n matrix. 

(2.1) is assumed to satisfy conditions for existence and uniqueness of solu- 
tion in some region R. in (x,t) space. 

It will be assumed that (2.1) is written in partitioned normal form. 
This means that if x is partitioned into q subvectors zl, . . . . 

Ilqy 
so that 

(2.1) can be written as 
. 

Xl = ii, + @I u1 
. . . . . . 

I 

(2.3) 
s = 94 + aq gq 

then each of these equations is to be written.in normal form. 
xi has normal components (xt, . . . . G), then X; = vi, and 

Explicitly, if 

* . 
The notation x denotes the time derivative, dx/dt. The functional dependence 
on 2 will sometimes - be suppressed for simplicity of notation. 

2 



I 

= 

. 
X21 . 
4 
. 

:I 
. + . 
i 

X m . 

gli 

0 . . . 0 

. . 

. . 

. . 

Ul 

u2 

. 

III 
. . 
. 

uq-l 

1 uq 

(2.4) 

. . 

It is permitted that gi = gi(xjz&and @i-j = ~~j(ri,t), i = 1, . . . . q. 

The normal form is important to future developments for a number of 
reasons to be explained subsequently. A direct consequence of the normal form 
is that zeros are forced to appear in all but the last row of the @ matrix of 
(2.4). This fact is used advantageously in deriving a workable control law. 

III. DEVELOPMENT OF SYNTHESIS TECHNIQUE 

With reference to Fig. 1, a synthesis technique is developed which 
insures that the plant state (II) will follow the model state (s) within some 
bound of error. The problem may be formally stated as follows: 

Given a set of inequality constraints on the elements of the control 
vector (u) and certain of the elements of the model state vector (s>, find a 
region R-in 5 space inside which a control law can be established so that the 
error (e) will be held within some bound. 

To solve this problem, the coordinates of the plant state vector (x) are 
first transformed to the error coordinates (g) by the equation 

g=s-z, (3.1) 

where it is understood that the partitioned forms of x and 2 are similar. 
Thus, for each subvector pi with elements (xt, . . . , 21, . there is a subvector 
si with elements (s!, si) defined according to G: = s:, gi i . . . , . . . . m-1 = smY 
the element s: being defined as the desired value of the plant output vi. 

Using (2.1) and (3.1), it follows that the differential equation of the 
error is given by 

. 
e= - - h(x t) - -9 (3.2) 

where 

&= - $(t> + g&t> + e&t) g(t). 

In partitioned form (3.3) can be expressed as 

(3.3) 
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. 
si 

= - h+(zc,t), i = 1, . . . . q. (3.4) 

The control objective.is to manipulate u within its constraints so as to keep 
= in the proximity of the point 2 = 0. This can be accomplished if, for some 
positive-definite function V(e), and with respect to (3.2), the algebraic sign 
of dV/dt is caused to be negative outside of some suitably small region about 
the origin. A difficulty in attempting to shrink this region to zero has 
been pointed out, notably by Monopoli'. This difficulty stems from the fact 
that u(t) may be implemented in such a way that an equilibrium solution e = 0 
does not exist as the size of this region shrinks to zero. It will be seen 
that this is the case in the present paper. Hence, although the synthesis 
procedure is motivated by Liapunov's Direct Method, the solution does not fall 
within the realm of Liapunov theory, since boundedness rather than stability 
must be used as a design criterion. 

In order to find a suitable function V 
& 
e), use will be made of the 

theorem attributed to Liapunov which states : 

If and only if A is a stability matrix, i.e., such that 
all A roots of the determintal equation IA-AI] = 0 have 
negative real parts, then for any positive-definite symmetric 
matrix Q, there is a positive-definite symmetric matrix P 
which is a unique solution to the equation* 

-Q = AtP + PA. (3.5) 

In the synthesis procedure to be developed, the A matrix need bear no 
relationship to the plant or the model. Hence, we are free to stipulate that 
A be partitioned in the diagonal form, 

-All 
A ii . 

0 
. 

'A 
49 1 , (3.6) 

so that A and e are conformably related. Thus, if a subvector pi is of m 
dimensions, then Aii is an m x m submatrix, A being an n x n matrix. 

Given any symmetric positive-definite Q matrix which is partitioned in a 
diagonal form similar to (3.6) so that A and Q are conformably partitioned, it 
has been shown3 that P, as a solution to (3.5), will be similarly partitioned 
in diagonal form. We have, therefore, established that Q and P can be found 
such that both 

*t A denotes the transpose of A. 
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(3.7) 

(3.8) 

are positive definite. 

In order to make use of this result, (3.2) will be written in the form 
. 
e= - h(x t) - A e + A e. - -3 (3.9) 

In compact notation let (3.9) be written as 
. 

g= - f(x t) +Ae. - -9 (3.10) 

Writing f as an explicit function of x,t, accounts for its dependence on e 
because e --, = e(x t). 

We turn now to the positive-definite quadratic form 

v = dPe, (3.11) 

and its time derivative 
. . 
v = ptPg + $Pl& (3.12) 

Substituting (3.10) into (3.12), it follows by using the symmetry of P that 

i = et(AtP + PA) e - 2etPf(x t). - -9 (3.13) 

Substituting (3.5) into (3.13), 
. 
v=- gt* - 2etPf(zC,t). (3.14) 

. 
Since Q is positive definite, it follows for e # 0 that V will be negative if 

stPf(x t) 1 0 - -9 (3.15) 
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Since f is a function of the controlled forces u, it is reasonable to expect 
that the inequality in (3.15) can,at least to some extent, be controlled by 
u(t) - 

Turning now to (3.8) and (3.11), it is observed that V can be expressed 
in the form 

v= Z V.(e.) 
i=l ' 1 

(3.16) 

wherein 

vi = <Pii%, i = 1, . . . . q. (3.17) 

Since V is positive definite, then each Vi is also positive definite as a 
consequence of the diagonal partitioned form of P. 

Simarly (3.14) can be written in thee form 
. 9 ' 
v= c vi 

i=l 
(3.18) 

wherein 
. 
vi = - <Qii% - 2zkPiifi(x,t), i = 1, . . . . q. (3.19) 

A sufficient condition for boundedness of-the solution to (3.2) can now be 
obtained by controlling the sign of each Vi and thereby establishing the 
boundedness of each subvector si, for i = 1, . . . . q. 

. 
To perceive the way in which u. 

t1 
can be used to control the sign of Vi, an 

explicit expression for the term pi Piifi in (3.19) is required. It will be 
helpful first to consider the following example: 

Example 3.1: 

Let (2.1) take on the explicit form 

‘1 
x1 = x; 

X2 l l = g;cx> + u,(t) 

;; = xc 

i2 
2 

= g;(x) + up> f U2W 

(3.20) 

where it is understood that the plant outputs are defined by v1 = xl, v2 2 = Xl, 
and 
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Equation (3.2) now has the explicit form 

el 
‘1 = ,l 

2 

e2 
‘1 = &l 

- g;(x) - u1 2 _- 

. 

$ = ez 

;; = ;2' - g;cg - Ul - l-3 

If the A matrix is partitioned according to (3.6), then 

(3.21) 

(3.22) 

(3.23) 

We are free to impose the requirement that each Aii be expressed in the normal 
form, so that 

0 1 
A=i ii [ 1 i , i = 1, 2. (3.24) 

a21 a22 

Then according to (3.9), (3.24), it is seen that (3.22) can be written as 

;?I = ‘1 
2 s2 - g:(z) - u1 - (aile: + ai2ei) + (aile: + ai2ei) 

(3.25) 

15; = ii; - g:(z) - u1 - u2 - (az,e: + az2es) 

+ (agle: + as2es) 

We can express (3.25) conveniently in terms of the compact form of (3.10). 
Thus, using subvector notation, 

(3.26) 
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it follows that 
0 

fl = 
4: + g:(z) + a1 e1 + ai2ei + u1 

21 1 I (3.27a) 

f2 = 

Assuming that the matrix P is in the form 

P= 
Pll ' 0 

--- , 
-o- j P22 

- 1 
with 

P = 
ii 

- 
0 

I 

. (3.27b) 
4; + g',(z) + asle: + ag2ec + u1 + u2 

- 

- . 
1 i 

Pll p12 - 1 ,i=1,2 , 
i i 

P21 P22 

then with reference to (3.19), we can state for this example that 

(3.28) 

(3.29) 

= cetpt2 - - - + e$:2) f: 1 

The fact that fi 
P 

is a factorable term in this equation is a direct consequence 
of having (3.25' in partitioned normal form. 

The results of this example are readily extended to the general case. 
Thus, as a generalizatjon of (3.29), we have 

where 

etP f -i ii-i = yifi, i = 1, -a*, q, (3.30) 

m . . 

'i 
= C e?p? . 

j=l J Jm 



Furthermore 

wherein 

and 

0 
. 

q= : 

[1 0 
fi 
m 

fi 
m 

= ci&,t) + 4mi(&9t) ui' 

(3.31) 

+ gi(z,t) + YI ai.ei 
4 

j=l m3 j 
+ c $mj(z,'t u.. (3.32) 

j=l .J 

j#i 

To require in (3.3Oj that 

etP f > 0 -i ii-i- 

is to require that 
. 

sgn(fil = sgn(yi), 
where sgn(.) is the sign function portrayed in Fig. 2. 

(3.33) 

(3.34) 

Fig. 2. Plot Of SgIl(yi) VS. yi 

It can be seen from (3.30) and (3.32) that (3.34) will be valid if two con- 
ditions are satisfied, namely: 

luJ F ~~,‘) , $Li > 0, 
I I ~ii(~’ t, (3.35) 
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and 

U. 
1 

- = w-hi(t)) l 

U. 
I I 

1 

(3.36) 

(3.35) and (3.36) form the basis for a design approach. 

In this paper the function ui will be represented as the output of a 
relay. It will be assumed for each ui, that 

U. = 1 L., 
1 

Yi L 'i 

0 < 

- 

lUij 

5 

Liy lyil < ‘i i 
i = 1 9 ..a, 99 (3.37) 

u. = -L., 1 1 Yi L 'i 
1 

where L. and 6. are positive numbers. 
represeitationi Of ui versus yi 

Two of the many possible graphical 
are sho-wn in Fig. 3. 

. 
6; y 

i 

U ih 

L '. i 

-5; I . 

I 

& Y i 

-Li . 

Fig. 3. Two Possible Representations of Ui vs. yi 

For the practical case in which 6i > 0, the description of Ui in (3.37) 
fails to guarantee that (3.36) will be satisfied when lyil < 6i. In SectionIV 
it will be shown, as a consequence of this fact, that Vi < 0 can be assured 
only outside a finite region about 3 = 0, and that s has an ultimate bound 
which becomes arbitrarily small as bi + 0. From (3.37) it also follows that 
pi < 0 can be assured only within some restricted region Ri(t) of the x space. 
This follows from the inability of IUil 2 Li to satisfy (3.35) for all x. 

A design procedure will now be developed by examining the functional 
dependencies of Ri. From (3.37) it follows that the region Ri in x for which 
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(3.35) can be satisfied, consists of the values of x for which 

Li 1 &.59t) . 
I I 9mi(x9 t, (3.38) 

From (3.32) it is observed that 5, and therefore Ri, are dependent upon a 
number of variables, some of which are within the designers control. As 
stated above, the components of ei will be shown to have a controllable bound. 
From (3.37) the components of 2 are bounded. 
understood that & and $mj, i = 1, 

Within some region Ro.it is 
. . . . q, are bounded*. Finally, 4, the 

time derivative of the highest-order component of the subvector gi, will be 
seen to be under the designers control. 

. 
The functional dependence of Ri on ii points out an important design con- 

sideration, namely: For a given level Li, the region Ri in which the plant is 
guaranteed of tracking the modei within some bounded error is inversely pro- 
portional to bounds on Si. conversely, a model can be designed with con- 
straints on G so as to insure that (3.38) will be satisfied within some 
region Ri. For multivariable control, if the solution x(t) is restricted to a 
region R, defined as the intersection of the q subregions, 

R=q Ri, i = 1, l -*, q, (3.39) 

then the total error vector e will be within some bound. Clearly, R, includes 
R. 

Finally, it is necessary to define the controlled forces so that (3.5) 
can be satisfied in some R,, for each i. This is always possible if a unique 
set of controlled forces is' associated 
. . . . q. 

with (2.3) for each value of i = 1, 

From the preceding discussion, it Fan be seen that the primary function 
of the model is to limit the values of .sA so that within some region R the 
tracking error (e> will be bounded. A constraint on G can be imposed either 
by means of an on-line computational procedure, to be illustrated in a design 
example (Section V ), or by the use of a limiter, as shown in Fig. 4. In this 
case, the choice of gains ko, . . . . km-l, are at the disposal of the designer. 
The limiting level is the only factor which is related to the synthesis pro- 
cedure. Furthermore, even though the plant may be controlled so that the com- 
ponents of v are essentially noninteracting in response to the model outputs, 
it does not follow that the model itself need be noninteracting. Therefore, 
the synthesis procedure allows for an interacting design, should this be 
desired. A design example illustrates this point. 

* . 
From (2.4) it is seen that gi = gi(x,s,t). It is assumed that the disturbance 
z is within known bounds. - 
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Fig. 4. Nonlinear Model Showing Constraint on litI 

IV. BOUNDS ON THE ERROR 

For the single-variable system of less than third order, Taylor6 has 
found a realistic bound on the error (2). This result can be applied to the 
multivariable system if each subvector (3) is less than third order, and if 
the P matrix is derived in the diagonal partitioned form of (3.8). For the 
case in which any ei is of higher than second order, the existence of a more 
conservative bound can be found for which the P matrix need not have the 
diagonal partitioned form. This result is useful in showing that in the most 
general case, the bound on the error can be made arbitrarily small as each 6i 
in Fig. 3 approaches zero. 

The bound found by Taylor will be discussed first, with reference to the 
multivariable problem. The assumption is made throughout that x(t) lies with- 
in the region R. For the case in which the P matrix is in the form of (3.8), 
there is,according to (3.17) for any given i, . a positive-definite function, 
V i, which can be used to characterize the motion of pi. Furthermore, as 
shown in Fi 
defined by B 

. 3, if u. is governed by (3.37), then there is a range of yi 
yil < 6i *or which (3.35), (3.36) are not necessarily satisfied. 

If pi is of second order, the region defined by lyil <6i lies within a strip 
in the pi p lane as shown in Fig. 5. 

. Since the components of e.~ have been defined in normal form, i.e., 
;?f = ei, it follows that motion in the lower half plane must be to the left, 
whereas motion in the upper half plane must be to the right. For the 
particular contour Vi = Ci, it follows from a geometrical argument that a 
trajectory which enters the ellipse Vi = ci will remain inside that ellipse. 
This argument depends, upon the interesting observation that points (l), (2) in 
Fig. 5, representing the intersection of the ellipse with the boundary of the 
strip, lie on a vertical line. On the other hand, since the control law 
guarantees Vi < 0 for lyil > 6i, it can be said that all trajectories of 3(t) 
originating outside of Vi = Ci will ultimately converge on Vi = Ci. Clearly, 
this ultimate bound on 9 exists for each i = 1, . . . . q. Therefore, 2 is 
bounded. 

12 
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Fig. 5. Ultimate Bound for ei of Two Dimensions 

Turning now to the more general case for which pi may be of any order, it 
is shown in Appendix I that, if each Bi is small enough and the solution z(t) 
is within R, then e(t) will be ultimately bounded7 according to* 

linl llnll 1. Ml (4.1) 
t-tco 

where M1 + 0 as syp 6i + 0. 

In order to show boundedness according to (4.Ll), we show the existence of 
a function V<e> which is positive definite, 

llell > M2, where M2 < Ml9 
and a V&t) which is negative for 

Ml and M2 both being positive numbers. 
the phase trajectories-in the region ll~~ll > M 

Thereupon, 
penetrate hyper surfaces 

V(e) = const from outside to inside, so that a 1 1 
initial points are bounded, 

solutions e(t) with bounded 

The need for introducing Ml 
with an ultimate bound being given by lIeI/ = Ml. 
stems from the fact that a trajectory could leave 

the hyper sphere ll~~ll = M and make a bounded excursion out of this region, 
constrained only by the re&irement that V c 0 at all points on such a 
trajectory. The hypersphere llell = Ml defines the bound on such a motion. 

*In this paper llell d enotes the Euclidian norm. 
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V. DESIGN EXAMPLE - CONTROL OF AN EXOTHEEWIC CHEMICAL REACTOR 

The problem to be considered is the control of a stirred-tank chemical 
reactor in which the process may be described as a continuous first-order 
exothermic chemical reaction. Referring to Fig. 6, the output variables are 
defined as the temperature (x2> of the tank, and concentration (xi) of a 
particular component (c) of t 2, e outflow. 
the flow rate (I$) of the coolant, 

The controlled inputs are in turn 
and the inflow concentration (UT) of the 

component (c). Based on the assumption of ideal mixing, the temperature (xf) 
and concentration (xi) are taken to be uniform throughout the tank. It is 
desired that x11 and xf shall be independently controlled. 

The equations characterizing the process can be derived from heat and 
mass balance relationships. Assuming constant volume (inflow = outflow), the 
heat and mass balance equations can be expressed in normalized form as follows 

x1 
'1 =q- (1 + k+f)) x; (5.la) 

4; = kl(x:) x; - (XT - x0)(1 + u;) (5.lb) 

where 

xi = concentration of component c in outflow 

x: = temperature of process 

* 
u1 = inflow concentration of component c 

u; = coolant rate 

xO = temperature of inflow and coolant 

kl(x:) = reactor rate term 

Using numerical values cited in [8], it will be assumed that 

xO = 1.75 

kl(x:> = exp (25 - 50/x:) 

(5.2) 

(5.3) 

It is observed that the process equations manifest a strong nonlinear 
intercoupling by virtue of the reaction-rate term kl(x:). Further, due to its 
exothermic nature, the process tends to be open-loop unstable. Thus, for the 

values of inflow concentration and coolant rate, given respectively by 
system can be shown to have an unstable equilibrium at 

The control 
xf 

roblem 
cess states x11, 

is to derive a control law which will bring the pro- 

P 
from an initial point xi = 0, x: = 1.75, to a desired 

operating point 1: 0.5, xf = 2. Anticipating that the process will be con- 
trolled as a multivariable system, reference is made to the control 

14 



configuration in Fig. 
according to* 

7 wherein the controlled variables u1 and u2 are defined 

4 = Ul + ul, 
(5.4) 

4 = u2 - u2, 

U1 and U2 being nominal values. 

Following the procedure outlined in Section III, we select A and Q to be 
of the form 

9 a:1 < 0, aF1 < 0, (5.5) 

, 41 
> 0, qtl > 0. (5.6) 

qi 
inflow (qi) = outflow (4,) 

Fig. 6. Stirred-Tank Chanical Reactor 

According to (3.51, P in turn takes the form 

(5.7) 

* 
The equation defining u2 is written in such form that $22 in (3.35) will be 
positive, as required. 

15 
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i' * with plr-qt1/2a:1, i=l, 2. 

. 
Evaluating the elements fi in (3.31), it follows, with U, = U, = 1, that 

j=; = - ;; - (1 + kl(x:I) xi + aile: + 1 + ul, (5.8a) 

q = - ;; + kl(x:) xi + afle: - (x: - x0)(2 - u2). (5.8b) 

. 
The conditions (3.35), (3.36) which u1 and u2 must fulfill to guarantee V < 0 
will now be obtained. Thus, using (5.8), (3.35) yields: 

b-Q I 1 I - q - (1 + kl(x:)) xi + aile: + 1 I , (5.9a) 

14 1 
- 6: + kl(xf) xi + afIef - 2(x$ - x0) 

XI - x; 
. (5.9b) 

chemical 
process 

L 
s: e: _ La -"2 4 

s-f% -o- 

XT 
* 

Fig. 7. Multivariable Control Figuration 

The equations relating to (3.36) in turn become 

&= sgn (Pllel l 2 2> 

(5.10a) 

(5.10b) 

Noting in Fig. 7 that u1 and u2 are generated by relay controllers, consider- 
ation will now be given to the roles of L1, L2, and 6,, 6, in the design. 
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From (3.38) and (5.9) it follows that regions R1 and R2, in which (5.9) 
will be satisfied, are defined respectively by 

L, 2 1 - ;: - (1 + kl(x:)) xi + a:1e: f 1 I, (5.11a) 

L, t 
- G: + k, (xf) xi + a:1e: - 2(x: - x0) 

XI - .x1 . (5.11b) 

In this example we shall arbitrarily let LI =.L, = 1: Furthermore, with 
reference to (5.7), it is convenient to let qf1=-2a:1, pi1 = 1, in which case 
it is permissable to let each atI become arbitrarily smal il . 
a11 14 

Hence, the terms 
and aflef appearing in (5.11) can be ignored. Regions in which control 

is possible can be determined from (5.11), assuming that &: and 6: are 
negligibly small. The results are plotted in Fig. 8. It may be concluded 
that multivariable control is possible in the region common to R1 and R,. 
Outside of RI and R, the control law is invalid. Inside those portions of RI 
or R2 not common to both, only single-variable control is assured. 

concentration 

1.75 1.8 1.9 2 temperature x: 

Fig. 8. Regions RI, R2, R, Relating to Control of Chemical Reactor 

The trajectory shown in Fi 
5'- 

8 represents one path on which the process 
variables can be brought from x1 - 0, XI = 1.75 to xi = 0.5, x7 = 2. From a 
to b, the process is uncontrolled, with Use= 1, uz = 0. At point b, the con- 
centration loop is closed and the process is controlled as a single variable 
system, holdin 

5 
the concentration constant. Thus, from b to c, with 

U^; = 1 + ul, u2 = 0, the temperature is allowed to increase without control. 
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At point c the temperature loop is closed, and xi, x: are controlled 
simultaneously so as to follow the designated path to point d. 

The problem we shall concern ourselves with is the motion from c to d. 
According to (5.11), there are limits which must be set on 6.!, &:, in order 
that the control law shall be valid. Within these limits, a bound on the 
error can be found-which depends upon 6, and 6,. In this problem it is 
readily seen that Vi < 0 for IefI > 6i, whereas for letI < &i, the sign of Vi 
is not assured of being negative.Hence, . 6i is seen to be an ultimate bound 
on ef, for i = 1, 2. Let us assume that 6, = 6, = 0.01. 

As noted in Section III, a bound on ]&:I and 16?1 could be instrumented 
in a model (Fig. 4) to assure the validity of (5.11) along the designated 

A more efficient solution to the problem would be to compute the maxi- 
zhGalues of 1611 I&.:l,which 
This approach isltiken here. 

are permitted at each point along the path. 

According to the slope of the trajectory from c to d, it is seen that 
ii; < 0, if > 0. Thus, from (5.11) we solve for /&:I,, and I&flmax according 
to the equations 

1;: I,, = (1 + kl(x:) xi) 

I’: Imax = kl(x:> x; - (x; - x0) 

(5.12) 

(5.13) 

The slope of the trajectory imposes the constraint ];:I = 41::1. Hence, the 
validity of (5.11) is preserved by the following statement: 

1;: I,, 
if pImax 14y use 1;: Imax; 

1;: I,, 
if l;fI,, ' 4, 

use l.G.:I,,* 

Data based on digital computation is presented in Table I, showing the 
errors incurred in tracking motions along the trajectory cd. In Table I-a 
the velocity was computed as above. In Table I-b the velocity was computed 
to have twice the magnitude permitted in order for (5.11) to be valid. 
Allowing for small discrepancies in the error bound as a result of discreti- 
zation, it is observed that the errors in (a) are within the bounds allowed by 
the synthesis procedure, whereas in (b) this bound in ef is clearly violated. 
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-- - 

s: 

0.90 

0.86 

0.83 

0.80 

0.75 

0.70 

0.64 

0.59 

0.51 

0.50 

0.50 

xi 

0.88 

0.88 

0.85 

0.80 

0.75 

0.71 

0.65 

C.61 

0.52 

0.49 

0.50 
- 

a b 
- 

s: 
- 

1.90 

1.91 

1.92 

1.93 

1.94 

1.95 

1.96 

1.98 

2.0 

2.0 

2.0 

XT + x: s: x: 
1.90 0.90 0.89 1.90 1.90 

1.90 0.83 0.84 1.92 1.90 

1.91 0.77 0.77 1.93 1.91 

1.92 0.71 0.71 1.95 1.92 

1.93 0.65 0.66 1.96 1.92 

1.94 0.60 0.61 1.98 1.93 

1.95 0.55 0.54 1.99 1.94 

1.97 0.50 0.51 2.0 1.94 

1.98 0.50 0.50 2.0 1.95 

1.99 0.50 0.50 2.0 1.95 

1.99 0.50 0.50 2.0 1.96 

Increments shown for intervals of 0.1 time units 

Table I 

VI. CONCLUSIONS 

The design of control systems based on the linear approximation fails to 
predict system behavior for large perturbations about the operating point. 
Furthermore, in the case of strongly nonlinear systems, particularly of the 
multivariable variety, the value of classical design techniques is greatly 
diminished. To cope with this problem a design technique has been developed 
which treats the nonlinear equations of the plant directly. The presence of 
hard-saturation constraints on the controlled forces is taken into account by 
establishing a region in which the plant can be controlled. The size of this 
region is in turn related to certain characteristics of the command inputs to 
the plant. By means of a nonlinear model, or a computational procedure, it is 
then possible to develop a set of plant inputs which the plant is capable of 
following with arbitrarily small error, provided the plant state vector is 
held within a specified region. 

Because the control law generally satisfies only a sufficiency condition 
for boundedness of the error, it is to be expected that the design may be 
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conservative. For example, the region R, inside which control is assured, 
may be unnecessarily restrictive. This criticism should, however, be weighed 
against the fact that a design which depends upon linearization fails to 
specify a region in which the design is valid. The convenient and commonly 
adopted assumption that a plant can be adequately represented by a linear part 
preceded by a nonlinearity is perhaps not worthy of as much attention as it 
has received. It is hoped that this paper will serve to demonstrate the 
advantages to be gained by working with the nonlinear differential equations. 

20 



APPENDIX I. DERIVATION OF AN ULTIMATE ERROR BOUND 

It will be shown that, with each Ui in (2.1) governed by (3.37), and with 
the plant state (x) restricted to some region R, a control law can be found 
which causes the solution of (3.2) to have an ultimate bound according to 

lb llell 1. Ml (A. 1) t-tco 
where M1 + 0 as SIIP pi -+ 0. This result can be derived without restricting 
the P matrix in (3.11) to have the partitioned diagonal form of (3.8). How- 
ever, it will serve the needs of this paper, and simplify the derivation, to 
assume here that P conforms to (3.8). 

As noted in Section IV, to prove boundednezs, it is sufficient to show, 
for some positive definite function V(e), 

Ml ’ My M2 1. Ml’ 
that V&t> < 0 outside of some 

According to (3.16) through (3.19), it suffices, 
Zi"G i;i~~~ f,;E ;f (3.8), to show that Vi(e,t) < 0 for Ileill > M;, i = 1, 
-a*, 4, i is positive definite. 

From (3.19), (3.30), iri can be written as 

ci = - e& - Y& (A. 2) 

where for simplicity we have chosen Qii as the unit matrix. According to 
(3.31), (3.32), 

. . m 
fz = - si + gz(x,t) + C ai.ei + Z (A.3) 

j=l mJ J j=l 
$mj (3 t> uj * 

We shall assume that all terms in fk are appropriately bounded, including 
and that an appropriate region Ri in z space has been determined 

i, both (3.35) and (3.36) are satisfied and Vi < 0. It 
must now be shown that there is a 6i such that, with lyil < 6i, the inequality 
‘ii i 0 prevails for some IleilI > M;, where M; 5 Ml. It will be recalled that 

Yi < 6i defines the condition for which (3.35), (3.36) can fail to be 
satisfied. 

From (A.2) we have the inequality 

For the condition lyil < 6i, it follows that 

ir,( - & + cji lfil. 

(A-4) 

(A.5) 
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: Using 
m I. . . m 
C iijei 1. SUP la'.] 

j=l J mJ 
C le$' 

j=l 

2 sup Iaij I 'Cm F (e~1211'2 
j j=l 

it is possible to write in place of (A.5) 

Vi L - IIeiI I2 + ‘i I’: IISiII + ‘:I’ 
. 

where k$ is an upper bound on the magnitude of the sum of all terms in fi not 

~r~~f~"s~~~'~~~~~h'~o~~;.dt in (A.6) with IleiI( >'Mi 
For the assumed bound Mi there is always a 6i 

M& required to yield the ultimate bou;d M:, 
ir. < 0. The value of 

depends oi'thi particular pii 
matrix. 

It follows directly that, if each ei is ultimately bounded, then e is 
bounded according to A.l, where(M1f= ipM$? 
follows that Ml + 0 as sup Ai + 0. '- 

Since each M: + 0 as 15'~: 0, it 

i 

REFERENCES 

[1] Grayson, L. P., "Design via Liapunov's Second Method," Preprints, Fourth 
J.A.C.C., Minneapolis, Minnesota, 1963, pp. 589-595. 

[2] Monopoli, R. V., "Synthesis Techniques Employing the Direct Method," 
I.E.E.E. AC-10.3, 1965, pp. 369-370. 

[3] Lindorff, D. P. and R. V. Monopoli, "Control of Time Variable Nonlinear 
Multivariable Systems Using Liapunov's Direct Method," Preprints, Seventh 
J.A.C.C., Seattle, Washington, 1966, pp. 475-484. 

[4] Monopoli, R. V. and L. P. Grayson, "Discussion on Two Theorems on the 
Second Method," I.E.E.E. AC-11.1, 1966, pp. 140-141. 

[5] Hahn, W., "Theory and Application of Liapunbv's Direct Method," Prentice- 
Hall, Englewood Cliffs, New Jersey, 1963. 

[6] Taylor, T. M., "Effect of Transducer Noise on Design of a Controller for 
Nonautonomous Plants," M.S. Thesis, University of Connecticut, Storrs, 
Connecticut, 1966. 

[7] Hahn, W., lot. cit., p. 129. 

[8] Aris, R. and N. Amundson, " On Analysis of Chemical Reactor Stability and 
Control" - I and II, Chem. Eng. SC., 7.3, 1958, pp. 121-147. 

22 NASA-Langley, 1961 ~~-716 


